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Outline of this tutorial

1 The basics of algebraic logic
2 Residuated lattices
3 Substructural logics
4 The interplay of algebra and logic
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Expanded version of these notes

G. Metcalfe, F. Paoli, C. Tsinakis, "Ordered algebras and logic", in H.
Hosni and F. Montagna, Probability, Uncertainty, Rationality, Pisa,
Edizioni della Normale, pp. 1-85, 2010.
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George Boole (1)

Boole’s Mathematical Analysis of Logic (1847) and An Investigation of the
Laws of Thought (1854) mark the offi cial birth of modern mathematical
logic. Boole admittedly sought no less than to “investigate the
fundamental laws of those operations of the mind by which reasoning is
performed, to give expression to them in the symbolical language of a
calculus, and upon this foundation to establish the science of Logic and
construct its method.”
Yet, Boole did not depart from tradition as radically as it might seem:
about one third of his Mathematical Analysis of Logic is occupied by an
algebraic treatment of Aristotelian syllogistic logic. For Boole, ordinary
logic is concerned with assertions about classes of objects. He then
translated the latter into equations in the language of classes. His
approach contained numerous errors, partly due to his insistence that the
algebra of logic should behave like ordinary algebra.
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George Boole (2)

Although the name “Boolean algebra" might suggest that the inventor of
this concept was Boole, there is by now widespread agreement that he was
not. Not that it is always easy to clearly understand what Boole had in
mind when working on his calculus of classes. As T. Hailperin puts it,

[Boole carried out] operations, procedures, and processes of
an algebraic character, often inadequately justified by present-day
standards and, at times, making no sense to a modern
mathematician. [... ] Boole considered this acceptable so long as
the end result could be given a meaning.

Boole’s operations of combination xy of two classes x and y and of
aggregation x + y of x and y do correspond to intersection and union,
respectively, but the latter only makes sense when x and y are disjoint.
Boole’s algebras bear therefore some resemblance to partial algebras,
except that often Boole found it unobjectionable to disregard his
disjointness condition throughout his calculations, provided the final result
did not violate the condition itself.
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Stanley Jevons

Boole preceded an array of researchers who tried to develop further his
idea of turning logical reasoning into an algebraic calculus. Stanley Jevons
(1835-1882), Charles S. Peirce (1839-1914), and Ernst Schröder
(1841-1902) took their cue from Boole’s investigations, but suggested
improvements and modifications to his work.
Jevons was dissatisfied with Boole’s choice of primitive set-theoretical
operations. He did not like the fact that aggregation was a partial
operation. In his Pure Logic (1864), he suggested a variant of Boole’s
calculus which he proudly advertised as based only on “processes of
self-evident meaning and force." He viewed + as a total operation making
sense for any pair of classes, essentially corresponding to set-theoretic
union. He also showed that all the expressions he used remained
interpretable throughout the intermediate steps of his calculations, thereby
overcoming one of the main drawbacks of Boole’s work.
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Charles Sanders Peirce

Peirce is usually credited with the foundation of the algebra of relations,
for which Schröder also made significant developments. However, in the
12,000 pages of his published work — rising to an astounding 90,000 if we
take into account his unpublished manuscripts —much more can be found:

He investigated the laws of propositional logic, discovering that all the
usual propositional connectives were definable in term of the single
connective NAND.

he introduced quantifiers, although, unlike Frege, he did not go so far
as to suggest an axiomatic calculus for quantified logic.

He conceived of complex and fascinating graphs by which he could
represent logical syntax in two or even three dimensions.

For all these achievements, however, his impact on logic would not be even
remotely comparable to that exerted by Frege.
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Adolf Lindenbaum and Alfred Tarski

Roughly at the same time as Hilbert and Bernays pinned down their
standard presentation of first order classical logic, E.L. Post (1897-1954),
J. Łukasiewicz (1878-1956), and C.I. Lewis (1883-1964), among others,
introduced the first Hilbert-style calculi for some propositional
(many-valued or modal) non-classical logics. Thus, already in the 1930’s
classical logic had quite a number of competitors (including intuitionistic
logic), each one trying to capture a different concept of logical
consequence.
But what should count, abstractly speaking, as a concept of logical
consequence? In answering this question, the Polish logicians Adolf
Lindenbaum (1904-1941) and Alfred Tarski (1901-1983) initiated a
confluence of the Fregean and algebra of logic traditions into one unique
stream. Lindenbaum and Tarski showed how it is possible to associate in a
canonical way propositional logical calculi (and their attendant
consequence relations) with classes of algebras.
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Propositional languages

A (propositional) language over a countably infinite set X , whose members
are referred to as variables, is a nonempty set L (disjoint from X ), whose
members are called connectives, such that a nonnegative integer n is
assigned to each member c of L. This integer is called the arity of c . The
set Fm of L-formulas over X is defined as follows:

Inductive beginning: Every member p of X is a formula.

Inductive step: If c is a connective of arity n and α1, ..., αn are
formulas, then so is c(α1, ..., αn).

We confine ourselves to cases where L is finite. For binary connectives the
customary infix notation will be employed.
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The formula algebra

If L = {c1, ..., cn} is a language over X , then by the inductive definition of
formula

Fm = 〈Fm, c1, ..., cn〉
is an algebra of type L, called the formula algebra of L.
Given a formula α(p1, ..., pn) containing at most the indicated variables,
an algebra A of language L and a1, ..., an ∈ A, αA(a1, ..., an) (or αA(−→a ))
is the result of the application to α of the unique homomorphism
h : Fm→ A such that h(pi ) = ai for all i ≤ n.
An equation of language L is a pair (α, β) of L-formulas, written α ≈ β.
Endomorphisms on Fm are called substitutions, and α is a substitution
instance of β in case there is a substitution σ s.t. α = σ (β).
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Consequence relations

A consequence relation over the formula algebra Fm is a relation
`⊆ ℘(Fm)× Fm with the following properties:

1 α ` α (reflexivity);
2 If Γ ` α and Γ ⊆ ∆, then ∆ ` α (monotonicity);
3 If Γ ` α and ∆ ` γ for every γ ∈ Γ, then ∆ ` α (cut).

A consequence relation ` is:
substitution-invariant in case, if Γ ` α and σ is a substitution on Fm,
then σ(Γ) ` σ(α) (σ(Γ) = {σ(γ) : γ ∈ Γ});
finitary in case, if Γ ` α, there exists a finite ∆ ⊆ Γ s.t. ∆ ` α.
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Propositional logics

A (propositional) logic is a pair L = (Fm,`), where Fm is the formula
algebra of some given language L and ` is a substitution-invariant
consequence relation over Fm.
Logic = a logical language + a concept of consequence among formulas of
that language according to which:

every formula follows from itself;

whatever follows from a set of premises also follows from any larger
set of premises;

whatever follows from consequences of a set of premises also follows
from the set itself;

whether a conclusion follows or not from a set of premises only
depends on the logical form of the premises and the conclusion
themselves.

A formula α is a theorem of the logic L = (Fm,`) if ∅ ` α.
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Hilbert-style calculi

An inference rule over Fm is a pair R = (Γ, α), where Γ is a finite
(possibly empty) subset of Fm and α ∈ Fm. If Γ is empty, the rule is an
axiom; otherwise, it is a proper rule.
A Hilbert-style calculus (over Fm) is a set of inference rules over Fm that
contains at least one axiom and at least one proper rule.
For axioms, outer brackets and the empty set symbol are usually omitted;
also, proper rules ({α1, ..., αn}, α) are written in the fractional form

α1, ..., αn
α
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An example: HCL

A1. α→ (β→ α)

A2. (α→ (β→ γ))→ ((α→ β)→ (α→ γ))

A3. α ∧ β→ α A4. α ∧ β→ β

A5. (α→ β)→ ((α→ γ)→ (α→ β ∧ γ))

A6. α→ α ∨ β A7. β→ α ∨ β

A8. (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ))

A9. (α→ β)→ ((α→ ¬β)→ ¬α) A10. α→ (¬α→ β)

A11. ¬¬α→ α A12. (α→ α)→ 1

A13. 1→ (α→ α) A14. 0→ ¬1

A15. ¬1→ 0 R1.
α α→ β

β
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Derivations in Hilbert-style calculi

If ∆ ∪ {β} ⊆ Fm and HL is a Hilbert-style calculus over Fm, a derivation
of β from ∆ in HL is a finite sequence β1, ..., βn of formulas in Fm s.t.
βn = β and for each βi (i ≤ n):

1 either βi is a member of ∆; or
2 βi is a substitution instance of an axiom of HL; or else
3 there are a substitution σ and an inference rule (Γ, α) ∈ HL such that

βi = σ(α) and, for every γ ∈ Γ, σ(γ) ∈ {β1, ..., βi−1}.
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Logics from Hilbert-style calculi

From any Hilbert-style calculus HL over Fm we can extract a logic
(Fm,`HL) by specifying that Γ `HL α whenever there is a derivation of α
from Γ in HL.
Such logics are called deductive systems and are finitary (this much is clear
from the very definition of derivation: after we prune Γ of all that is not
necessary to derive α, we are left with a finite set).
Classical propositional logic can be now identified with the deductive
system CL = (Fm,`HCL).
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What did Lindenbaum and Tarski prove?

Developing an idea by Lindenbaum, Tarski showed in 1935 in what sense
Boolean algebras can be considered the algebraic counterpart of CL.
Actually, Tarski pointed out a rather weak kind of correspondence between
Boolean algebras and classical logic: he showed that the former are an
algebraic semantics for the latter, a notion that we now proceed to explain
in full generality.
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Translations

Let L = (Fm,`L) be a logic in the language L, and let
τ = {γi (p) ≈ δi (p)}i∈I be a set of equations in a single variable of L.
We may also think of τ as a function which maps formulas in Fm to sets
of equations of the same type.
Thus, we let τ(α) stand for the set

{γi (p/α) ≈ δi (p/α)}i∈I .
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Algebraic semantics

Now, let K be a class of algebras also of the same language. We say that
K is an algebraic semantics for L if, for some such τ, the following
condition holds for all Γ ∪ {α} ⊆ Fm:

Γ `L α iff for every A ∈ K and every −→a ∈ An,
if τ(γ)A(−→a ) for all γ ∈ Γ, then τ(α)A(−→a ),

a condition which can be rewritten as

Γ `L α iff {τ(γ) : γ ∈ Γ} `Eq(K) τ(α).
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The intuitive idea

Given an algebra A ∈ K, valuations h : Fm→ A, where A ∈ K, are
interpreted as “assignments of meanings” to elements of Fm; thus,
elements of A can be seen as “meanings of propositions”or “truth values”.
The translation map τ defines, for every A ∈ K, a “truth set”T ⊆ A in
the following sense: A satisfies τ(α) just in case every valuation of α on A
maps it to a member of T (intuitively: the meaning of α in A belongs to
the set of “true values”and hence is true).
We want α to follow from the set of premises Γ just in case, whenever we
assign a “true”value to all the premises in some algebra in K, the
conclusion is also assigned a “true”value.
In particular, if L contains a nullary connective 1, it is possible to choose τ
to be the singleton {p ≈ 1} and, in particular, the element 1A as “true”.
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Classical logic and Boolean algebras (1)

A Boolean algebra is usually defined as an algebra

A = 〈A,∧,∨,¬, 1, 0〉

such that 〈A,∧,∨, 1, 0〉 is a bounded distributive lattice and, for every
a ∈ A, a ∧ ¬a = 0 and a ∨ ¬a = 1.
To apply the definition of algebraic semantics, Boolean algebras must be
algebras of the same language as the formula algebra of CL, whence it is
expedient to include in the language the derived operation symbol →
(defined via p → q = ¬p ∨ q).
We also set

τ = {p ≈ 1}
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Classical logic and Boolean algebras (2)

Theorem

The class BA of Boolean algebras is an algebraic semantics for CL.

Proof.
(Sketch). The left-to-right implication can be established by induction on
the length of a derivation of α from Γ in HCL: we show that axioms A1 to
A15 are always evaluated at 1A for every A ∈ BA and that the proper
inference rule R1 preserves this property.
The converse implication is trickier. We show the contrapositive: we
suppose that Γ 0HCL α and prove that there exist a Boolean algebra A
and a sequence of elements −→a such that γ(−→a ) = 1A for all γ ∈ Γ, yet
α(−→a ) 6= 1A.
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Classical logic and Boolean algebras (3)

Proof.
Let T be the smallest set of L-formulas that includes Γ and is closed
under `HCL. Define ΘT ⊆ Fm2 as follows:

(β,γ) ∈ ΘT iff β→ γ,γ→ β ∈ T .

We have to show that:

1 ΘT is a congruence on Fm, and the coset
[
1Fm

]
ΘT
is just T ;

2 the quotient Fm/ΘT is a Boolean algebra.

Proofs of (1) and (2) make heavy use of syntactic lemmas established for
HCL.To get a falsifying model, it now suffi ces to take A = Fm/ΘT (we
are justified in so doing by (2)) and evaluate each p in Γ ∪ {α} as its own
congruence class modulo ΘT : then γA(

−−→
[p]ΘT

) = 1A for all γ ∈ Γ (since

Γ ⊆ T ) yet αA(
−−→
[p]ΘT

) 6= 1A (since α /∈ T ).
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Algebraic logic after Lindenbaum and Tarski

Algebraic logic rapidly developed after World War Two, once again to the
credit of Polish logicians.
Although Tarski had permanently settled in the States before that time,
establishing in Berkeley what would become the leading research group in
algebraic logic worldwide, his compatriots Jerzy Łós, Roman Suszko,
Helena Rasiowa, and Roman Sikorski kept the flag of Polish algebraic logic
flying, developing in detail throughout the 1950’s and 1960’s the theory of
logical matrices initiated twenty years earlier by Łukasiewicz and Tarski
himself.
A major breakthrough came about in 1989, when Wim Blok and Don
Pigozzi (one of Tarski’s students) published their monograph on
algebraizable logics, considered a milestone in the area of abstract
algebraic logic.
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Shortcomings of the Lindenbaum-Tarski approach (1)

First shortcoming: the relationship between a logic and its algebraic
semantics can be promiscuous.

There are logics with no algebraic semantics. An example is the
deductive system (Fm,`HI), where HI is the Hilbert-style calculus
whose sole axiom is α→ α and whose sole inference rule is modus
ponens.

The same logic can have more than one algebraic semantics. By
Glivenko’s Theorem, CL admits not only BA as an algebraic
semantics, but also the variety HA of Heyting algebras, by choosing
τ = {¬¬p ≈ 1}.
There can be different logics with the same algebraic semantics.
Since Heyting algebras are an algebraic semantics for intuitionistic
logic IL, the previous example shows that both CL and IL have HA
as an algebraic semantics.
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Shortcomings of the Lindenbaum-Tarski approach (2)

Second shortcoming: the relationship between a logic and its algebraic
semantics can be asymmetric.
The property of belonging to the set of “true values”of an algebra A ∈ K
must be definable by means of the set of equations τ, whence the class K
has the expressive resources to indicate when a given formula is valid in L.
On the other hand, the logic L need not have the expressive resources to
indicate when a given equation holds in K.
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Shortcomings of the Lindenbaum-Tarski approach (3)

For example, there is no way in CL to express, by means of a condition
involving a set of formulas, when it is the case that α ≈ β holds in its
algebraic semantics HA. This makes a sharp contrast with the other
algebraic semantics BA: as we have seen, α ≈ β holds in BA just in case
`HCL α→ β and `HCL β→ α.
The notion of algebraizability aims at making precise this stronger relation
between a logic and a class of algebras which holds between CL and BA,
but not between CL and its “unoffi cial” semantics HA.
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Notational conventions

Given an equation α ≈ β and a set of formulas in two variables
ρ = {αj (p, q)}j∈J , we use the abbreviation

ρ (α, β) = {αj (p/α, q/β)}j∈J .

ρ will be also regarded as a function mapping equations to sets of formulas.
If Γ,∆ are sets of formulas, Γ `L ∆ means Γ `L α for all α ∈ ∆; if E ,E ′

are sets of equations, E `Eq(K) E ′ means E `Eq(K) ε for all ε ∈ E ′.
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Algebraizable logics (1)

A logic L = (Fm,`L) is said to be algebraizable with equivalent algebraic
semantics K (where Kis a class of algebras of the same language as Fm)
iff there exist a map τ from formulas to sets of equations, and a map ρ
from equations to sets of formulas such that the following conditions hold
for any α, β ∈ Fm:
AL1: Γ `L α iff τ(Γ) `Eq(K) τ(α);

AL2: E `Eq(K) α ≈ β iff ρ (E ) `L ρ (α, β);

AL3: α a`L ρ (τ(α));

AL4: α ≈ β a`Eq(K) τ(ρ (α, β)).
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Algebraizable logics (2)

The sets τ(p) and ρ(p, q) are respectively called a system of defining
equations and a system of equivalence formulas for L and K.
A logic L is algebraizable (tout court) iff, for some K, it is algebraizable
with equivalent algebraic semantics K.
This definition can be drastically simplified: L is algebraizable with
equivalent algebraic semantics K iff it satisfies either AL1 and AL4, or else
AL2 and AL3.
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Algebraizability of classical logic

Theorem
CL is algebraizable with equivalent algebraic semantics BA.

Proof.
Let τ(p) = {p ≈ 1} and ρ(p, q) = {p → q, q → p}. We need only check
that τ and ρ satisfy conditions AL1 and AL4. However, we already proved
AL1. As for AL4,

α ≈ β a`Eq(BA) τ(ρ(α, β)) iff α ≈ β a`Eq(BA) τ(α→ β, β→ α)

iff
α ≈ β a`Eq(BA) {α→ β ≈ 1,

β→ α ≈ 1}.

However, given any A ∈ BA and any −→a ∈ An, αA(−→a ) = βA(−→a ) just in
case α→ βA(−→a ) = 1A and β→ αA(−→a ) = 1A, which proves our
conclusion.
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Properties of algebraizability

Every equivalent algebraic semantics for L is, in particular, an
algebraic semantics for L in virtue of AL1. The converse need not
hold.

If L is algebraizable with equivalent algebraic semantics K, then K
might not be the unique equivalent algebraic semantics for L.
However, in case L is finitary, any two equivalent algebraic semantics
for L generate the same quasivariety. This quasivariety is in turn an
equivalent algebraic semantics for the same logic (the equivalent
quasivariety semantics for L).
It is possible to have different algebraizable logics with the same
equivalent algebraic semantics; however, if L and L′ are algebraizable
with equivalent quasivariety semantics K and with the same set of
defining equations τ(p), then L and L′ must coincide.
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Algebraizability: a syntactic characterization

Theorem
A logic L = (Fm,`L) is algebraizable iff there exist a set ρ(p, q) of
formulas in two variables and a set of equations τ(p) in a single variable
such that, for any α, β,γ ∈ Fm, the following conditions hold:

1 `L ρ(α, α);
2 ρ (α, β) `L ρ (β, α);
3 ρ (α, β) , ρ (β,γ) `L ρ(α,γ);

4 For every n-ary connective cn and for every −→α ,−→β ∈ Fmn,

ρ (α1, β1) , ..., ρ (αn, βn) `L ρ
(
cn
(−→α ) , cn (−→β ))

5 α a`L ρ(τ(α)).

In this case ρ(p, q) and τ(p) are, respectively, a set of defining equations
and a set of equivalence formulas for L.
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